БУФЕРНЫЙ КАСКАД ДЛЯ ЭЛЕКТРОГИТАРЫ Сенюткин П.А.

Сенюткин Петр Алексеевич – инженер-электрик, пенсионер, г. Глазов

Аннотация: рассмотрена схема буферного каскада для согласования электрогитары с усилителем. Приведены экспериментальные результаты. Показаны характеристики для промышленного звукоснимателя BS-01N-BK фирмы Belcat Co.,Ltd.

Ключевые слова: буферный каскад, амплитудно-частотные характеристики, емкость гитарного кабеля.

В качестве основы для буферного каскада (БК) автор использовал простейший истоковый повторитель на основе известной схемы S.A.G.E.[1].Схема каскада приведена на рис. 1.

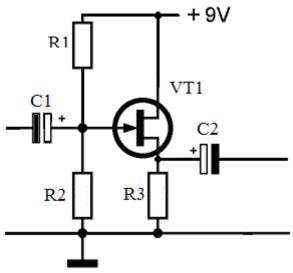


Рис. 1. Схема буферного каскада. R1=R2=2 MOм, R3=15 кОм, C1=10 мкФ, C2=100 мкФ, VT1- КПЗ03Б

Характеристики БК, измеренные автором:

- входное сопротивление $R_{BX5K} = 1,7$ МОм
- выходное сопротивление $R_{\rm BЫXБK} = 420~{
 m Om}$
- усиление по напряжению 0,88
- полоса частот на уровне (-1 дБ) = 40 Γ ц-20 к Γ ц.

Эксперименты проводились со звукоснимателем (3C) BS-01N-BK фирмы Belcat Co.,Ltd с оптимальным согласованием, исследованном в работе [2, 13]. Характеристики элементов его эквивалентной схемы: L=3,4 Гн, R=5,5 кОм, C=182 пФ, $R_{\Pi}=582$ кОм, $R_{\Gamma}=264$ кОм (регулятор громкости), $R_{M}=10$ МОм (входное сопротивление мультиметра M890G), $C_{M}=23$ пФ (входная емкость мультиметра M890G). Схема измерений представлена на рис.2. Измерялась амплитудно-частотная характеристика (АЧХ) 3С в режиме приема по методике [3, 30].

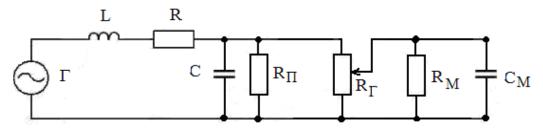


Рис. 2. Схема 3C, нагруженного мультиметром ($R_M C_M$)

Результаты измерений для схемы на рис. 2 представлены на рис. 3. Пунктиром на рис. 3 показан уровень 0,707 (-3 дБ) от максимального значения коэффициента передачи K_U .



Рис. 3. АЧХ ЗС для схемы рис. 2

Полоса частот на уровне (-3дБ) составляет около 0,06-7,5 кГц, $K_{\rm UMAKC}=1$, резонансная частота $f_{\rm P}=5$ кГц. Входное и выходное сопротивления БК должны обеспечивать хорошую развязку АЧХ 3С от гитарного кабеля и входных характеристик гитарного усилителя. Для проверки этого предположения была собрана схема, показанная на рис.4. Схема содержит следующие компоненты: 3С (L, R, C, R_{II} , R_{I}), БК, гитарный кабель, изготовленный из кабеля RG58, длиной 16 м (емкость кабеля $C_K=1685$ пФ, погонная емкость 105,3 пФ/м), входное сопротивление усилителя $R_{BX}=10$ кОм, входная емкость усилителя $C_{BX}=530$ пФ. Значения R_{BX} и C_{BX} являются типичными для гитарных усилителей из бюджетной серии GA-10 для начинающих исполнителей.

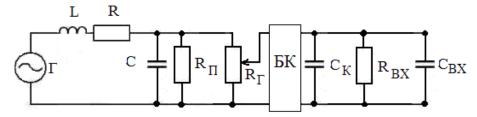


Рис. 4. Схема 3С нагруженного буферным каскадом (БК), кабелем (C_K) и входом усилителя (R_{BX} и C_{BX})

Рассчитаем AЧX 3С в режиме приема для схемы на рис. 4 при той же нагрузке, но без БК [3, 30]. Результаты расчета показаны на рис. 5.

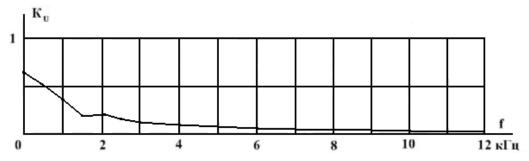


Рис. 5. АЧХ для схемы рис.4. без БК

Из рис. 5 видно, что увеличенная емкость 3С (C+ C_{K} + C_{BX}) снизила резонансную частоту 3С с 5 к Γ ц до, примерно, 2 к Γ ц, а низкое значение R_{II} (параллельное соединение R_{II} , R_{Γ} и R_{BX}) значительно уменьшило K_{U} и уменьшило полосу частот.

Результаты измерений для схемы рис. 4 с БК представлены на рис. 6. Пунктиром на рис. 6 показан уровень 0,707 (-3 дБ) от максимального значения коэффициента передачи K_U .

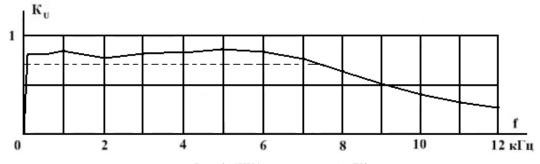


Рис. 6. АЧХ для схемы рис. 4 с БК

Из рис. 6 видно, что наличие БК с малым выходным сопротивлением практически исключил влияние кабеля на АЧХ (рис. 3, рис. 6). Полоса частот для графика на рис. 6 на уровне (-3дБ) составляет около 0.05-7,4 к Γ ц, $K_{UMAKC} = 0.85$ резонансная частота $f_P = 5$ к Γ ц. За счет конечного сопротивления входа БК, сопротивления входа усилителя и коэффициента передачи БК, график на рис. 6 лежит ниже графика на рис. 3.

Выход БК с выходным сопротивлением $R_{\text{ВЫХБК}}$ можно представить в виде генератора Γ , с внутренним сопротивлением $R_{\rm BЫХБК}$. Тогда схему рис.4 после БК можно представить в виде:

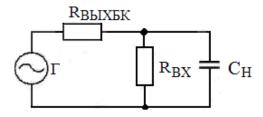


Рис. 7. Передача сигнала в нагрузку

На рис. 7 R_{BX} =10 кОм – входное сопротивление усилителя, $R_{BЫХБК}$ = 420 Ом – внутреннее сопротивление БК, $C_H = C_{K^+} + C_{BX} = 1685 \text{ п}\Phi + 530 \text{ п}\Phi = 2215 \text{ п}\Phi - \text{емкость нагрузки равная суммарной}$ емкость кабеля и входной емкости усилителя. Для схемы на рис. 7, коэффициент передачи напряжения K_U от генератора Γ в нагрузку:

$$K_{U} = \frac{1}{\sqrt{\left(1 + \frac{R_{BbIXEK}}{R_{BX}}\right)^{2} + \left(\omega C_{H} R_{BbIXEK}\right)^{2}}}$$
(1)

Подставив в (1) все значения кроме f (в к Γ ц), получим:

$$K_U = \frac{1}{\sqrt{1,085 + 0,000031f^2}}$$
 (2)

Как и в работе [2, 13], примем минимальное значение $K_U \ge 0.9$. Из (2) видно, что $K_U = 0.96$ и практически не зависит от частоты в диапазоне от 0 до 20 кГц и более. Это значение будет возрастать до 1 при изменении R_{вх} от 10 кОм до бесконечности. Частотные характеристики при этом не меняются, так как первое слагаемое под корнем не зависит от частоты, а второе слагаемое, формально зависящее от частоты не влияет на К_U. Конечно можно подключить электрогитару и к усилителю с входным сопротивлением 1-10 кОм, что приведет только к потере амплитуды сигнала без изменения АЧХ. Практически для $K_U \ge 0.9$ можно принять условие выбора выходного сопротивления $R_{\mathit{BЫХБК}}$ относительно входного сопротивления усилителя R_{BX} :

$$R_{BbIXEK} \leq R_{BX}/10$$
 (3)

 $R_{BЫXБK} \le R_{BX}/10$ (3) Следует отметить, что коэффициент перед f^2 в (2) настолько мал, что даже при длине кабеля 60-65 м $K_U \ge 0.9$ в диапазоне частот от 0 до 20 к Γ ц и никакого заметного влияния на звук гитары наблюдаться не будет.

Список литературы

- 1. Troshnev A. Smart Altering Guitar Electronics S.A.G.E. [Электронный ресурс]. Режим доступа: http://www.sugardas.lt/~igoramps/Article57.htm/ (дата обращения: 07.03.2019).
- 2. Сенюткин П.А. Согласование электрогитары с усилителем. НОК № 2 (36), 2019. Стр. 13-18.
- 3. Сенюткин П.А. Об эквивалентной схеме электромагнитного звукоснимателя для электрогитары. Радио. № 6, 2018. Стр. 30-31.